

REPORT: ARTISTIC STYLE TRANSFER
Tuan Tran – A20357888

 Tung Nguyen – A20350345

I. Introduction:

With the recent advancement in Deep Learning, machines have achieved significant,

near-human performances on a lot of key areas of visual related problems such as object

recognition. However, a visual perception area on algorithmically investigating how humans

create and perceive artistic imagery has only emerged in recent years. More specifically, in

fine arts like painting, even though humans are able to create unique visual experiences

through composing a complex interplay between the content and style of an image, there

haven’t been any algorithms which demonstrate the same capabilities. The term “style

transfer” has been coined to describe such problem of training machines to “roughly” mimic

human’s ability to interplay different image styles to create unique and complex visual

experiences. To put it simply, style transfer is the problem of recomposing images in the

style of other images; that is, given an original image, and a second image with specific

style, we would like to create a new image with the style of the second image applied to the

content of the original image. Even though it does not fully explain how humans create

unique art pieces, style transfer is definitely the right logical step towards solving the more

complex problem of understanding how humans create and perceive arts.

We’ll use the algorithm introduced by Gatys et al. as the basis of this project. With a

pre-trained VGG model and a clever loss setup, Gatys et al. algorithm is able to achieve

high-quality results and also provides insights into image representations learned by

Convolutional Neural Networks and empirically demonstrate CNNs’ potential for high level

image synthesis and manipulation [1]. We’ll also implement an extension of this method

proposed by Johnson et al. in order to speed up styling process. This extension allows for

fast real time style transfer.

II. Base Model Approach:

In order to capture image representations, Gatys et al. proposed a training algorithm

that uses the feature space of the pre-trained and very competent CNN called VGG

network. Even though Gatys et al. used VGG19, we decided to use VGG16 since we found

that VGG16’s generated images are more coherent and not as noisy as those generated by

VGG19. Thus, we’ll use VGG16 for both our base model results (proposed by Gatys et al.)

and for the extension model proposed by Johnson et al.

The general approach can be laid out systematically:

(i) Define content image and style image and resize such that they are of same size

(ii) Define a white noise image as the optimization image (also same size with the

content and style image). The model will optimize this image such that at the

final iteration, this image will be the output with the style (from input style

image) applied to the content from the input content image. Normalize the 3

images

(iii) Define content loss by taking mean squared error of the content representation

of content image and that of optimization image

(iv) Define style loss using gram matrices (for style representation) and difference

between style representation of style image and that of optimization image

(v) Define total loss = content_weight * content loss + style_weight * style_loss

(vi) Update optimization image and minimize total loss until convergence or stopping

criteria. Style transferred

(vii) To transfer style for a new pair of content + style image, repeat from step (i)

1. Content Representation:

VGG16, when trained on object recognition, will develop a representation of the image

that become increasingly explicit along the processing hierarchy [2]. When an input image is

passed into VGG16 (or any CNN), along the deeper layers, the feature maps will encode

image informations that are increasingly sensitive to the actual content of the image, but

become invariant to the precise appearance. For example, the content of a photo of a dog

face is very similar to the content of all other dog face images, even though the color or

facial structure may change slightly. In other words, the high-level content of dog face

image remains the same, despite the exact pixel values may differ. Thus, VGG16 deeper

layers are able to encode such high-level content while the shallower layers simply produce

representations that reproduce the exact pixel values [1]. To see that this claim holds, we

reconstructed a white noise image to match an input content image and examine the

representations produced by using layer ‘conv1_2’, ‘conv3_2’, and ‘conv5_2:

 Original conv1_2 conv3_2 conv5_2

Indeed, the lower layers like ‘conv1_2’ simply reproduce the original image (so the exact

pixel values), the reconstruction from the middle layer ‘conv3_2’ starts to deviates away

from exact reconstruction, while the deeper layers like ‘conv5_2’ capture the high-level

content in terms of objects and their arrangement/features, even though pixel values are

now very different. The feature maps from these middle to higher layers are therefore

called content representation of an input image since these layers encode the content

information of the image [1]. We then proceed to use the content representation to

compute content loss described below.

Let us define a content loss. For a layer 𝑙, let 𝐹𝑙 and 𝑃𝑙 be the feature map/response

when passing the optimization image and content image as input, respectively. Thus 𝐹𝑖,𝑗
𝑙 /𝑃𝑖,𝑗

𝑙

will be the activation (ReLU) of the 𝑖𝑡ℎ filter at position 𝑗 in layer 𝑙. In order to transform the

optimization image such that it contains the content of the content image, Gatys et al.

proposed a content loss function between the content representation of the optimization

image (x) and the content representation of the content image (c):

𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝑐, 𝑥, 𝑙) =
1

2
∑(𝐹𝑖,𝑗

𝑙 − 𝑃𝑖,𝑗
𝑙)

2

𝑖,𝑗

Afterwards, we can calculate
𝜕𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝑐,𝑥,𝑙)

𝜕𝑥
 using back propagation (since

𝜕𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝑐,𝑥,𝑙)

𝜕𝐹𝑖,𝑗
𝑙 is

well defined [1]) and update our initially random/ white noise image x until its feature map

at some layer 𝑙 matches the content image p’s feature map at that same layer 𝑙. Note that

we only update the image x directly, instead of updating any parameters in VGG network.

Gatys et al. suggested matching the content representation on only layer “conv4_2”;

however, since we use VGG16, it’s suggested that we use ‘conv2_2’, so 𝑙 = conv2_2 [3].

2. Style representation:

To obtain a style representation from the style input image, we construct a Gram matrix

which can be built on top of the feature map in any layer of VGG16 [1]. The Gram matrix

consists of the correlations between different filter responses, and thus captures the

texture information of an image [2]. Let 𝐺𝑙 ∈ 𝑅𝑁𝑙∗𝑁𝑙 be the gram matrix built from feature

maps of layer 𝑙 where 𝑁𝑙 is the number of distinct filters. Then, 𝐺𝑖𝑗
𝑙 is the inner product

between the vectorized feature maps 𝑖 and 𝑗 in layer 𝑙 [1]:

𝐺𝑖𝑗
𝑙 = ∑ 𝐹𝑖𝑘

𝑙

𝑘

𝐹𝑗𝑘
𝑙

The basic intuition behind Gram matrix is that by multiplying elements of each

combination of feature maps together, we are essentially checking if the elements

“overlap” at their location in the image. The summation then discards all the information’s

spatial relevance. As in the previous part, we can obtain a style reconstruction (for the

picture, 1_2 means layer conv1_2):

 Original 1_2 1_2, 2_2 1_2,2_2,3_3,4_3,5_3

In contrast to content part, where we produced the matched representation only using

1 layer, for style, Gatys et al. suggested matching/reconstructing using multiple layers. This

is justified when we look at the style reconstruction. When we reconstruct using only one

layer ‘conv1_2’, the style produced/matched is still abstract and does not represent the

style in the original image. But as we use more layers, for example when we use ‘conv1_2’,

‘conv2_2’, ‘conv3_3’, ‘conv4_3’, and ‘conv5_3’, the reconstructed style seems to be more in

line with the original image’s artistic style.

Let us now define a style loss. Let 𝐺𝑙 be the gram matrix of layer 𝑙 feature maps when

white noise image x is passed in and let 𝐴𝑙 be the gram matrix of layer 𝑙 feature maps when

input style image a is passed in. With the gram matrix, we can now define our style

representation loss for a single layer 𝑙:

𝐿𝑙 =
1

4𝑁𝑙
2𝑀𝑙

2 ∑(𝐺𝑖𝑗
𝑙 − 𝐴𝑖𝑗

𝑙)^2

𝑖,𝑗

 Given the loss per layer, we can obtain a total loss:

𝐿𝑠𝑡𝑦𝑙𝑒(𝑎, 𝑥) = ∑ 𝑤𝑙 ∗ 𝐿𝑙

𝐿

𝑙=0

where 𝑤𝑙 are weight factors of the contribution of each layer to the total loss [1]. We can

then compute the gradient
𝜕𝐿𝑙

𝜕𝑥
 using back propagation as

𝜕𝐿𝑙

𝜕𝐹𝑖𝑗
𝑙 can be computed easily [1].

Afterwards, we update our initially random/ white noise image x until its feature maps at

several (or all) layers 𝑙 = 0 … 𝐿 matches the style image p’s feature maps at that

corresponding layers. Gatys et al. suggested using only layers ‘conv1_1’, ‘conv2_1’,

‘conv3_1’, ‘conv4_1’, and ‘conv5_1’ to match the style. However, since we used VGG16,

layers ‘conv1_2’, ‘conv2_2’, ‘conv3_3’, and ‘conv4_3’ were used instead [3]. Weight factors

𝑤𝑙 is set to 1/(number of active layers) (so = 1/5) for those layers (and 0 for all other layers).

3. Simultaneous content and style matching for style transfer:

Given a content input image p and a style input image a, we can gradually update an

image x (originally white noise) such that at the final iteration, x is our output image with

the style of image a applied to the content of p. This simultaneous style and content

representation matchings can be achieved by minimizing a loss function which is a linear

combination of the previously defined content and style loss:

𝐿𝑡𝑜𝑡𝑎𝑙(𝑝, 𝑎, 𝑥) = 𝛼𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝑝, 𝑥) + 𝛽𝐿𝑠𝑡𝑦𝑙𝑒(𝑎, 𝑥)

where 𝛼, 𝛽 are the weight factors for content and style reconstruction, respectively [1].

III. Extension Model – Fast Neural Network Style Transfer:

With the current base model, even though the output images perform well, the key

problem with it is image generation speed and model generalization. In other words,

because for each image and a corresponding style, we will optimize a particular model for it,

it will take a long time to refine the results. It will be a problem when we want to transfer

the style of a large number of images. Furthermore, processing style transfer for a video will

take a long time to complete. Hence, a model that can perform style transfer quickly as well

as generalizable is desirable. In this experiment, we attempted to recreate the model

proposed in Johnson et al., utilize it for real-time video style transferring.

The main idea of this method is instead of relying on one model for each input image,

we will train a feed-forward network which perform image transformation. After training,

this network will perform style transferring for an image by predict the output of a given

input image. The network is called Image Transformation Network. Because the goal of the

model is to optimize the image style transformation, we need to define a loss function that

can help mimic both the style and the content. This is where the perceptual loss proposed

by Gatys et al. comes in handy. In the proposed extension model, the output of Image

Transformation Network will be used to compute perceptual loss of the model. This loss

function will be use to optimize the model and update the weights.

In the end, our trained model will be a general model that can transfer one image to a

particular style. Each trained model will be responsible for 1 style. We thus find W* such

that:

𝑊∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑊𝑬𝑥,{𝑦𝑖} [∑ 𝜆𝑖𝑙𝑖(𝑓𝑊(𝑥), 𝑦𝑖)

𝑖=1

]

where 𝑓𝑊(𝑥) is the transformation output of input x. 𝑙𝑖 is the loss with respect to the target

output at layer i (𝑦𝑖). 𝜆𝑖 is the weight of the losses. The objective is to minimize the

perceptual loss given by an output image. The losses we use are the Style loss, Content loss

and Total variation regularizer.

1. Image Transformation Model:

The image transformation model proposed in Johnson et al. consists of 3 blocks of layers

a. Convolution and Deconvolution block:

The convolution block consists of 3 layers. The first one is a Convolution2D, then a Batch

Normalization layer and last layer will be the Activation layer of the block. The activation

layer will be ReLU for input and hidden blocks, and Tanh for output block. We use Tanh for

the last block because the input is a normalized image, thus we’d like the output to also be

a normalized image with value ranges [-1,1] which can then be denormalized back into a

RGB image of pixel range [0,255]. In summary, the convolution block is:

Conv2D -> Batch Normalization -> Activation (ReLU or Tanh)

The deconvolution block has the same structure as the convolution block, but we use

Conv2DTranspose instead of Conv2D. Thus the block structure is:

Conv2DTranspose -> Batch Normalization -> Activation (ReLU)

b. Residual block:

Residual blocks are used as the middle layers of the model, with the following structure:

Input -> Conv2D -> Batch Norm -> Activation (ReLU) -> Conv2D -> Batch Norm -> Add(input,

Batch Norm output)

Overall, the final model will first down sample the input with 2 convolution block, push it

through 5 residual blocks and finally up sample through 2 deconvolution blocks. The reason

behind down sampling is that this helps increases the training speed of the model and yields

a better performance. Note that the first and last Convolution blocks are for input and

outputting the image, while the hidden layers are used for image transformation. The

network representation is as follows:

2. Loss Network:

Following the algorithm proposed by Gatys et al., we will use the same content loss and

style loss as defined in the base model. The only exception is that Johnson et al. model will

use VGG16 instead of VGG19. Since we need the VGG network to compute content and

style loss, we can think of Johnson et al. model as an image transformation model combined

with the VGG network (figure above). Because Johnson et al. used VGG16, they suggested

matching the content representation on layer ‘conv3_3’ (instead of ‘conv4_2’) and

matching the style representation on layers ‘conv1_2’, ‘conv2_2’, ‘conv3_3’, ‘conv4_3’.

Additionally, Johnson et al. also introduced a total variation regularization 𝐿𝑇𝑉. This

regularizer is used to smooth out and de-noise the output image of the model:

𝐿𝑇𝑉 = ∑ √|𝑦𝑖+1,𝑗 − 𝑦𝑖,𝑗|
2

+ |𝑦𝑖,𝑗+1 − 𝑦𝑖,𝑗|
2

𝑖,𝑗

where y is the output image array and 𝑦𝑖,𝑗 is the corresponding pixel value at i,j.

3. Combining the networks:

As discussed above, since we need VGG network to compute style and content loss, we

can think of Johnson et al. model as a combination of image transformation network and a

VGG network. However, in order to cooperate the image transformation net with VGG

network, there are a few key points:

(i) In our model design, image transformation network has input x and output y.

Input x is the image we want to transfer the style, which means we want to our

output y to match the “content” of x. We then combine transformation net with

the loss network using a Concatenate layer that concatenate x and y and feed

the concatenation into VGG16/loss network. By concatenation, we have a

continuous model from input image x to the end of VGG16.

(ii) Since our model also takes into consideration the style of an image, we create a

style dummy net where its output is the same as its input. The justification for

this is that we want to create a continuous model. Hence, this dummy net will

output the normalized style image and concatenate it to the Concatenate layer.

Thus the overall architecture when implemented is:

(iii) Since our model has no ground truth and rather an optimization problem, our

target value for the Loss Network will be a dummy target with 0 value. We also

create a dummy loss function which returns 0.0 while compiling the Loss Net

using keras. We then implement the loss by adding a regularization on each of

the designated content and style layer. By doing so, the loss in the end is still

cumulated correctly while keeping the model implementation easier [5]

(iv) Weights from VGG16 will not be updated, but rather only the weights from

image transformation net will be updated

IV. Results:
1. Base Model Results:

Our implementation included helpers such as normalizing/denormalizing images

retrieved from [6]. We used both gray-scale and colored images. We set content weight

𝛼 = 0.1, and style weight 𝛽 = 5000 for all inputs. We resized all images to 500x500(x3) for

consistency and computation speed. We used L-BFGS as optimization algorithm as

suggested by Gatys et al. and set the number iterations to 20. We thus obtained the

following results:

 Content Image Style Image Output

An important thing to note is that we decided to choose VGG16 over VGG19 because

VGG16 seemed to be able to separate style and content better and the resulting images

were smoother and more coherent than those generated when using VGG19. For VGG19,

even though having followed the specifications of the authors, we could not reproduce the

style transferred images with the same quality as those in the paper. Additionally, we

found, through experimenting, that VGG16 produced consistent quality results with the

same content and style weight (0.1 and 5000 respectively). While with VGG19, we had to

change the content and style weight around for each new pair of content + style image in

order to achieve reasonably good style transfer.

2. Extension Model Results:

The model was trained using MS COCO dataset which consists of more than 82,000

images for training. For faster computation, all images will be resized to 256x256, though,

the model can be generalized for larger images as well as producing a higher resolution

output. The optimizer used was Adam with the learning rate of 0.001. The default weight of

total variation regularizer ranges from 10−3 to 10−6 and the weights of style and content

loss vary depending on the desired style and content synthesis [3]. According to Johnson et

al., the model was trained for roughly 2 epochs per image with a batch size of 4. Each style

image will be trained on a different model.

Due to resource and time constraint, we cannot train the full model on the dataset

which is roughly 12GB. Instead, we will still construct the image transformation model, but

then we will load the pre-trained weights provided by [4] to the implemented model. The

set of images below shows the result from using the pre-trained weights of the style from

Udnie and the Wave. The model runs much faster than the base model, transferring at the

rate of 0.5 second per image:

Image: Results from the pre-trained model

Firstly, qualitatively speaking, compared to the base model, the output styled images

are of the same perceptual quality. It is clear, from the results produced above, that the

trained model is aware of the separation between semantic content and texture

information of images [3]. Additionally, the images produced by the extension model are

actually a bit smoother than those produced by base model, due to the presence of a total

variation regularizer that helps smooth out and denoise.

Secondly, when using 1 GTX 1080 ti on pictures of size 256x256x3, the extension model

finished style transferring in 0.4 seconds while the base model needed 2 minutes and 14

seconds. We can see that the extension model is ~300 times faster than the base model

which is crucial since we are able to offset the slow training time by extremely fast

prediction time, making this suitable for video as well as real time style transfer. For video,

we separate each frame, perform style transferring and convert it back to a 30 fps video:

 Image: Sample frame from video

Due to the extremely fast style transferring, we can also perform real-time style transfer

via webcam. Similar to how we processed video, only this time, we perform real-time style

transfer using the local computer webcam. Since we ran on a local computer with limited

computing power (using only CPU), style transfer was pretty slow. However, if forward

computation is performed on GPU or using more powerful resources, real-time style

transfer can be achieved. The webcam demo resides in Pretrained-Fast-Neural notebook.

On an additional note, as mentioned above, due to resource and time constraint, we

could not train the full model on all of the training set. However, we did implement the full

model and trained on a training set of 10 images, running for roughly 100 epochs. The

resulting image for the matching of the mountain picture and the art piece “Starry Night” is

below:

Though not significant, we can clearly see that the output image matched (right hand side)

can both preserve the content as well as capturing some of the style from “Starry Night”.

The code for the full model and its training is available in Fast-Neural-Net notebook.

On the last note in this result section, we’d like to address a problem when evaluating

the model which is the way we handle image processing. The last layer of the image

transformation net is a Tanh activation layer, so the value will range from -1 to 1. However,

we want to convert the array back to RGB in range of [0,255] and depending on the

calculations, the picture can be too dark or overexposed, like this example below:

To have the best consistent results, let x be our predicted arrays, we can transform and

denormalize x into the final image X:

𝑋 = 𝑓𝑙𝑜𝑜𝑟 (𝑥 ∗ 127.5 +
255

2
)

To recap, the extension model exhibited similar qualitative result to Gatys et al. algorithm

and is much faster at style transferring, allowing for video and real-time style transfer.

V. References:

[1] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. 2016. Image Style Transfer

Using Convolutional Neural Networks. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition.

[2] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. 2015. Texture Synthesis Using

Convolutional Neural Networks. In Advances in Neural Information Processing Systems.

[3] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual Losses for Real-Time Style

Transfer and Super-Resolution. 2016. In The European Conference on Computer Vision.

[4] Overflocat. 2018. A Keras Implementation of Fast-Neural-Style. Github. Retrieved from:

https://github.com/overflocat/fast-neural-style-keras

[5] Sam Lee. 2017. A Fast Neural Style Transfer Implement with Keras 2. Github. Retrieved

from: https://github.com/misgod/fast-neural-style-keras

[6] Greg Surma. 2018. Style Transfer – Styling Images with Convolutional Neural Networks.

Towards Data Science. Retrieved from: https://towardsdatascience.com/style-transfer-

styling-images-with-convolutional-neural-networks-7d215b58f461

https://github.com/overflocat/fast-neural-style-keras
https://github.com/misgod/fast-neural-style-keras
https://towardsdatascience.com/style-transfer-styling-images-with-convolutional-neural-networks-7d215b58f461
https://towardsdatascience.com/style-transfer-styling-images-with-convolutional-neural-networks-7d215b58f461

