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Abstract  - League  of  Legends (LoL)  is  one  of  the  most  popular  online  video  games  in  the                  
world.  A  game  match  contains  2  teams  of  5  players  and  each  player  controls  a  character                 
with  a  unique  set  of  abilities.  This  means  that  there  are  many  factors  which  can  influence                 
which  team  wins.  There  are  influences  both  from  the  characters  being  used  as  well  as  the                 
individual  skill  of  the  players.  We  have  created  a  data  pipeline  using  Microsoft  Azure  to                
process  data  from  the  LoL  developer  API  and  created  a  machine  learning  model  to  predict                
the   winning   team   based   both   off   of   the   player   and   character   compositions   of   each   team.   
 

I. INTRODUCTION  
League  of  Legends  is  a  MOBA  (Multiplayer  online  battle  arena)  game  developed  by  Riot               

Games  where  even  minor  differences  can  make  a  big  impact  on  the  outcome  of  the  game.  It  is                   
one  of  the  most  played  video  games  in  the  world  and  in  2016  it  had  100  million  monthly  players                    
[14].  The  game  consists  of  two  5  person  teams  where  each  player  controls  1  of  146  champions.                  
Every  champion  has  strengths  and  weaknesses  with  unique  interactions  between  them.            
Champions  are  picked  in  a  draft  format  with  each  team  having  the  ability  to  remove  5  champions                  
from  the  available  pool  before  picks  are  made.  Champion  picks  are  unique  within  a  game.  This                 
means  that  the  composition  of  the  two  teams  plays  a  huge  role  in  the  outcome  of  the  match.                   
However,  the  players  themselves  also  have  a  large  impact.  Player  skill  is  measured  both  by  a                 
visible  rank  as  well  as  a  hidden  matchmaking  rating  which  is  used  to  create  balanced  matches.                 
There  is  also  an  internally  calculated  mastery  score  that  every  player  has  for  each  champion.  This                 
score   measures   how   much   and   how   well   a   player   plays   a   champion.  

The  LoL  developer  API  gives  us  the  ability  to  query  thousands  of  matches.  We  have                
access  to  all  of  the  players  in  a  match,  their  personal  statistics  and  the  champions  that  they                  
played.  We  fit  a  model  to  predict  which  team  will  win  a  game  based  off  of  the  players  and                    
champions  on  each  team.  We  harnessed  the  power  of  Riot’s  developer  API  as  well  as  Microsoft                 
Azure  to  build  and  deploy  a  machine  learning  model  that  predicts  the  winning  team.  However,                
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fitting  the  most  complex  model  that  we  developed  on  all  of  the  data  was  too  computationally                 
expensive,  so  we  also  created  a  simpler  model  which  could  utilize  all  of  the  data  rather  than  a                   
subset  of  it.  Azure  HDInsight  allowed  us  to  use  Apache  Spark  and  Spark  ML  for  our  data                  
processing  and  the  building  of  the  model  and  allowed  us  to  use  CosmosDB  to  store  our  data  [6].                   
However,  during  the  process  of  building  the  pipeline,  we  found  that  HDInsight  limited  our               
options  for  deploying  the  model  to  the  web  app,  so  we  adopted  another  spark  platform  called                 
Databricks.  Deploying  the  app  through  Databricks  also  required  the  use  of  Azure  Machine              
Learning  [13].  We  also  decided  to  create  models  using  both  SparkML  and  Scikit  learn  to  see  the                  
differences   between   the   two   of   them.   The   web   app   itself   was   created   using   Flask   and   HTML.  
 

II. RELATED   WORK  
Given  the  rise  of  powerful  machine  learning  libraries  and  big  data,  video  games  are  an                

excellent  source  for  researchers  to  test  and  implement  their  findings.  For  each  LoL  game,  each                
player  chooses  a  champion  from  the  champion  pool.  Combined  with  a  number  of  items  and  runes                 
(additional  pre-game  choices  which  can  influence  the  game)  each  champion  can  buy,  each              
League  game  has 32  billion  possible  team  compositions.  Hence,  predicting  the  outcome  of  a  LoL                
match  poses  an  interesting  challenge  for  big  data  algorithms.  Many  attempts  to  this  problem  have                
been  made.  Felton  et  al.  [12]  uses  a  simple  3-layer  neural  network  to  predict  the  outcome  of  a                   
match  with  an  80%  accuracy.  The  project's  data  consisted  of  1781  games.  The  input  features  for                 
each  game  were  the  human  players  statistics  (win  rate,  champion  mastery  points),  the  champion               
statistics  (win  rate  across  the  whole  server,  champion  tier),  and  the  sum  of  all  those  input  values.                  
Jihan  Yin  [9]  compares  prediction  results  across  multiple  machine  learning  models  by  using  a               
dataset  of  1700  matches.  Each  player-champion  pair  had  14  features:  5  champion  statistics  and  9                
player  statistics.  In  total,  there  were  140  input  features  for  each  match  in  the  feature  matrix.  The                  
best  results  achieved  were  ~63%  in  sensitivity  by  using  Gradient  Boosting.  The  article  concludes               
that  players  statistics  are  more  predictive  than  champion  statistics,  that  the  AD-carry  role  had  the                
least  importance  in  impacting  the  game,  and  that  a  match  cannot  be  decided  purely  based  on                 
champion   select.   

Defense  of  the  Ancients (DotA)  is  a  similar  game  to  LoL.  They  are  both               
champions-based  MOBA  games  and  DotA  is  often  considered  a  more  complex  game  than  LoL.               
Wang  [18]  built  prediction  models  based  on  5,071,858  match  records  and  introduced  game              
length  as  an  additional  input  feature.  The  author  concluded  that  Neural  Networks  were  not  better                
than  Logistic  Regression  (around  61%  accuracy)  and  that  the  game  length  feature  had  a  small                
positive  impact  on  the  performance.  Conley  et  al.  [4]  built  a  champion  select  recommendation               
engine  by  using  a  greedy  search  on  all  possible  matchups.  The  winning  probability  of  each                
matchup  was  calculated  through  a  Logistic  Regression  (69.8%  accuracy)  or  a  K-Nearest             
Neighbors  (67.43%  accuracy)  model.  Kalyanaraman's  work  [8]  introduces  a  graph-based           
approach  to  predict  the  outcome  of  the  games.  Though  the  results  were  promising,  we  chose  not                 
to   follow   this   approach   due   to   the   complexity   of   graph   algorithms   and   the   purpose   of   the   project.   
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Our  project  will  follow  the  suggestions  from  these  other  works.  Simple  Logistic             
Regression  is  a  good  option  since  it  offers  both  low  time  complexity  and  comparable  results.  For                 
each  match,  the  target  will  be  a  binary  indicator  showing  whether  the  blue  team  won  or  not.  The                   
features  for  each  instance  are  a  combination  of  each  player's  historical  performance             
measurements  and  the  champion  statistics.  To  perform  machine  learning  on  Hadoop,  we  will              
make  use  of  Spark  ML,  Scikit-Learn  and  Jupyter  Notebooks  [1].  In  our  interactive  web  program,                
the  user  will  enter  the  usernames,  champions,  and  roles  of  all  10  players  from  both  sides.  The                  
program  will  return  the  winning  probability  of  the  blue  side  (team  100),  which  is  the  posterior                 
probability     of   the   classifier. (y |x)P = 1  

 
 
 

 
Figure   1:   Overview   of   our   pipeline   

 
III. METHODOLOGY  

A. Why   Azure?   
 Azure  is  a  platform-as-a-service  product  that  we  were  already  familiar  with  which  meant               

that  it  was  simply  the  fastest  way  to  get  started  with  the  project.  By  doing  everything  within                  
Azure  all  of  the  connections  between  the  various  pieces  of  the  pipeline  were  done  for  us.  We                  
chose  to  use  Azure’s  ecosystem  because  it  saved  us  a  significant  amount  of  overhead.  It  was  also                  
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advantageous  to  have  a  single  hub  where  we  could  monitor  all  of  the  different  resources  that  we                  
were   using.  

 
B. Data   Collection   

The  first  step  of  the  project  was  to  query  data  from  Riot  Games  API  onto  a  database  so  that  we                     
could  harness  the  power  of  distributed  computing  to  process  it.  We  decided  to  store  the  data  in                  
Azure  CosmosDB.  CosmosDB  provided  an  efficient  method  for  storing  data.  One  of  the  most               
attractive  features  of  Cosmos  is  that  it  is  schema  agnostic.  Each  database  in  Cosmos  consists  of  a                  
collection  or Container  [2].  Each  Container  stores  data  based  on  keys  called ids .  Data  sent  to                 
each  Container  is  accessed  by  these ids.  For  our  project,  the  final  processed  data  comes  in  the                  
form  of  Python  dictionaries  with  distinct  keys  for  each  object.  Because  Cosmos  handles  data  on                
keys,  we  did  not  have  to  worry  about  managing  the  schema  of  our  data.  All  we  had  to  do  was  to                      
create  a  dictionary  with  our  predefined  id  and  send  it  to  our  desired  database.  Since  our  raw  data                   
came  in  the  form  of  JSON  objects,  it  is  best  to  utilize  CosmosDB  for  our  project  compared  to                   
Azure   Blob   Storage[20].  

For  our  project,  we  needed  to  get  3  separate  contents  from  the  developer  API:  champion,                
summoner  (  what  players  are  referred  to  as  internally),  and  match  data.  The  first  went  into  a                  
Cosmos  container  called  Champions,  which  contained  base  statistics  for  each  champion  in  LoL.              
Riot  Games  provides  a  static  JSON  file  called Champion .  It  is  a  file  with  all  of  the  necessary                   
statistics  (damage  per  level,  hp  per  level,  etc.,)  for  all  146  champions  in  the  game.  For  each                  
champion,  we  extract  its  statistics  from  the  file,  summarize  them  into  a  dictionary  and  send  the                 
dictionary   to   the    Champions   Container    on   Cosmos,   keying   by   championId.   

The  second  Container  we  created  was  the Players  Container (players_final),  which            
consists  of  all  of  the  player  data.  To  collect  player  data,  we  utilize  Riot  Games  API  to  collect  a                    
list  of  players  of  a  certain  rank  in  the  game  (players'  mastery  are  classified  by  ranks  in  the  game).                    
We  called  these  players seed  players ,  as  a  separation  from secondary  players which  is  explained                
later  in  the  paper.  For  each  player  in  this  list,  we  query  their  data  and  the  ids  of  their  previous  10                      
matches.  A  player  dictionary  will  then  be  created  and  sent  to  the  Players  Container,  the  key  is  the                   
summoner   (player)   id.  

The  last  container  we  use  is  the Matches  Container (matches_final).  Match  data  is              
queried  from  the  Riot  API  based  on  the  match  ids  collected  from seed  players .  The  returned                 
JSON  object  will  be  the  overall  match  statistics  and  each  player's  performance  statistics  during               
that  match.  The  object  will  then  be  sent  to  the  container,  keying  by  matchId.  However,  because                 
in  our  final  machine  learning  model,  we  predict  a  match  outcome  based  on  the  history                
performance  of  all  10  players,  we  will  need  to  collect  more  data.  For  now,  we  only  have  data  of                    
the  seed  players  and  their  corresponding  10  previous  matches'  history,  called seed  matches .  For               
each  of  the  collected seed  matches ,  we  need  to  collect  the  history  data  of  the  remaining  9  users,                   
we  called  these  users secondary  players .  In  order  to  have  the  average  statistics  of  the  secondary                 
players,  we  collect  the  data  from  their  previous  3  matches,  called  the secondary  matches.  All                
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secondary  data  will  be  sent  to  Matches  and  Players  Container,  residing  in  the  same  place  as  the                  
seed   data.   An   overview   of   the   data   collection   process   is   visualized   in    Figure   2 .   

The   data   collection   script   was   run   on   a   Ubuntu   virtual   machine   deployed   on   Azure.  
 

 
Figure   2:   Overview   of   data   collection   process.  

 
C. Data   Processing  

Once  the  data  is  on  Azure,  we  begin  the  process  of  data  cleaning,  feature  extraction  and                 
feature  engineering.  Spark  is  the  ideal  technology  for  the  processing  of  our  data.  The  most                
important  thing  is  that  it  is  scalable.  LoL  is  one  of  the  most  popular  video  games  in  the  world                    
which  means  there  are  an  immense  number  of  games  being  played  every  day.  The  scalability  of                 
Spark  means  that  we  can  choose  to  collect  a  huge  amount  of  data  and  still  get  good  performance.                   
Spark  also  offers  access  to  other  powerful  tools  which  give  us  access  to  machine  learning                
libraries.  By  doing  our  data  processing  on  Spark,  we  made  it  easier  to  transition  into  the  rest  of                   
the  project.  One  of  the  largest  benefits  of  Spark  is  that  it  is  easy  to  set  up  and  use.  Traditionally,                     
distributed  computing  has  many  challenges  associated  with  it.  Compared  to  MapReduce,  Spark             
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runs  upwards  of  10  to  100  times  faster  [19]  and  writing  the  code  is  much  simpler,  as  Spark                   
handles  a  lot  of  the  work  behind  the  scenes.  It  is  also  more  flexible  than  MapReduce  which  is                   
limited   to   a   strict   format.   

We  used  an Azure  HDInsight  Spark  cluster  and Azure  Databricks  for  our  data              
processing.  HDInsight  provides  an  easily  available  and  easy  to  configure  Spark  cluster  which  has               
a  well  documented  connector  to  CosmosDB  which  allowed  for  both  reads  and  writes  [6].  The                
Spark  cluster  got  the  data  from  Cosmos  using  the  CosmosDB  to  HDInsight  connector  which               
allowed  us  to  directly  load  data  from Containers  into  Spark  DataFrames  [16].  From  here  we                
could  analyze  and  extract  the  features  that  we  needed  for  our  model  through  the  built-in Jupyter                 
Notebook functionality.  In  this  project,  we  use  HDInsight  to  create  a  PySpark's  dataframe              
features  matrix  for  the  machine  learning  model. Databricks ,  with  its  ability  to  connect  to  the                
Azure  Machine  Learning  Workspace ,  is  used  to  collect  the  features  matrix  produced  by              
HDInsight   and   perform   logistic   regression   on   the   matrix.   

For  our  feature  engineering  process,  first,  we  create  a  champion  table.  This  is  simply  the                
process  of  querying  the  data  from  the Champions  Container .  The  champion  DataFrame  is               
stored   under   the   name    mast_champ_join.    Overview   of   the   DataFrame   is   shown   in   Table   1.  

Second,  we  query  match  data  from  the Match  Container .  One  thing  that  we  had  to  filter                 
out  of  the  data  was  a  special  case  for  LoL  matches.  Typically  in  LoL,  the  only  way  that  a  game                     
ends  is  when  one  team  defeats  the  other,  however,  sometimes  a  player  fails  to  ever  connect  to  the                   
game.  In  these  cases,  the  game  can  be  ended  early,  at  the  3  minute  mark,  and  the  match  is                    
effectively  a  draw.  These  matches  were  irrelevant  for  our  data  as  they  contain  no  meaningful                
stats  due  to  their  short  length  and  lack  of  a  definitive  conclusion.  Since  the  draw  always  happens                  
at  roughly  the  same  time  every  match,  it  was  trivial  to  filter  out  games  which  had  a  duration                   
value  less  than  7  minutes.  The  reason  7  minutes  was  chosen  rather  than  3  is  quite  simple.  The                   
team  which  has  a  disconnected  player  gets  to  choose  whether  they  would  like  to  end  the  match                  
early  or  play  it  out,  which  might  be  done  because  the  missing  player  is  simply  connecting  late                  
and  the  team  doesn’t  mind  the  temporary  disadvantage.  They  have  a  time  window  in  which  they                 
can  vote  to  end  the  game  or  not.  7  minutes  is  the  minimum  amount  of  time  that  a  LoL  match  can                      
last  and  still  be  counted  for  the  purposes  of  in-game  reward  systems  and  is  comfortably  past  the                  
point   of   the   vote   to   end   early,   so   it   always   yields   only   the   relevant   matches.   

For  each  match,  we  collect  the  match  feature  that  describes  which  team  won  and  save  it                 
to  a  DataFrame.  However,  the  match  result  stored  in  the  raw  data  was  very  unintuitive,  so  we  had                   
to  engineer  it  into  a  more  reasonable  0  or  1  binary  feature.  It  was  originally  stored  as  a  string                    
with  “WIN”  or  “FAIL”  as  the  values.  There  was  also  a  win  feature  for  each  team  despite  this                   
being  redundant  since  only  one  team  can  win  and  the  other  must  lose,  which  meant  that  we  had                   
an  array  with  these  string  values  in  it  instead  of  1  binary  feature  like  we  wanted  for  our  target                    
variable.  The  team  in  raw  data  is  called  100  (Blue)  and  200  (Red).  Our  label,  in  the  end,  is  a                     
binary  variable  which  indicate  whether  Blue  team  (100)  wins  (0  if  lose  and  1  if  win).  The  data  is                    
then   saved   in   a   2   column   DataFrame   called    label_col.   
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Table   1.   Champion   table   mast_champ_join,   id   is   champion   id  

  
Table   2.   Label   table     label_col,   id   is   match   id  

 
The  final  matrix  was  to  include  each  player’s  average  stats  for  the  games  in  their  match                 

history,  and  the  base  stats  for  each  champion.  Since  we  used  PySpark,  we  broke  the  DataFrame                 
creation  process  into  multiple  small  steps.  Each  step  would  output  one  matrix.  The  output               
matrices  would  then  be  joined  together  to  create  the  final  player  history  statistics  matrix.  Spark                
structured  data  in  a  table  format,  so  the  process  was  much  more  complicated  than  we  anticipated.                 
For  example,  within  a  match,  each  player  was  referred  to  by  a  participant  ID  ranging  from  1  to                   
10  rather  than  their  unique  player  ID.  The  player  ID  was  bound  to  the  participant  ID  in  a                   
different  nested  struct  from  the  one  that  contained  all  of  the  statistics.  The  process  to  create  final                  
stats   table   for   each   player   is   described   below:  

i. First,  for  each  match  in  the Match  Container,  we  query  the  list  of  summonerIds,               
championIds,  lanes,  roles  and  game  statistics  for  all  players  in  the  game.  We  save               
this   in   a   numpy   array   called    stats_np .  

ii. For  each  match  in  the Match  Container,  we  collect  the  match  duration  (in              
minutes)  and  match  id.  We  save  these  values  in  2  lists  called matchIds_list  and               
matchDur_list .  

iii. We  combine stats_np , matchIds_list  and  matchDur_list to  create  a  statistic           
matrix  for  each  match.  The  matrix  is  called match_sum_stats_agg_df and  its            
schema   is   presented   in    Table   3 .   

iv. Notice  that  in  this  matrix,  data  in  some  columns  came  in  the  form  of  an  array  with                  
length  10.  This  is  the  aggregated  data  of  all  10  players  in  a  game.  The  data  is                  
combined  due  to  how  Spark  handles  nested  dictionaries.  Each  value  in  the  array  is               
the  stats  belong  to  one  player  in  the  game,  the  index  in  the  array  corresponds  to                 
the   participantId   in   the   game.  

v. We  then  expanded  this  matrix  so  each  row  consists  of  1  value  for  each  of  those                 
aggregated  columns.  Because  each  index  corresponds  to  1  player,  we  expand  the             
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matrix  by  looping  the  zipped  list  of  aggregated  columns.  Moreover,  we  will  clean              
the  role,  lane  and  team  columns,  and  combine  them  together.  An  example  of  this               
expanded  matrix  is  shown  in  Table  4 .  The  expanded  matrix  is  called             
match_sum_stats.   

vi. The   stats   will   then   be   normalized   by   game   duration   in   minutes.  
vii. Lastly,  we  will  expand  the player_stats_inv column  into  multiple  columns  for            

easier   data   manipulation.   Each   statistic   will   be   assigned   a   name.   .  
viii. We  then  average  the  statistics  column  by  grouping  the  expanded  matrix  by             

summonerIds.   The   final   table   for   average   player   is   called    summoner_avg_stats.   

 
Table   3.   match_sum_stats_agg_df  

 
Table   4.   match_sum_stats   

 

 
Table   5.   summoner_avg_stats  

 

 
Table   6.   match_sum_stats_join  
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We  then  join  3  tables: summoner_avg_stats,  label_col, and mast_champ_join together           

through  the  use  of  another  table: match_sum_stats_join. Our  feature  matrix,           
players_matchs_stats,    now   has   the   schema   as   follows:   

 
We  then  remove  matches  with  less  than  10  rows  in  the  expanded  matrix.  This  is  because                 

we  only  want  to  keep  the seed  matches  and  valid secondary  matches for  our  final  matrix.  Most                  
Secondary   matches    do   not   have   a   large   enough   player   history   for   all   10   players.  

In  the  end,  to  create  our final  feature  matrix ,  for  each  valid  match,  we  create  a  set  of                   
features  based  on  the  team  and  the  role  of  the  players.  Features  were  named  in  the  format                  
team_role_stats .  For  example,  one  feature  name  is 100_JUNGLE_avg(totalDamageDealt) .  Each          
instance  in features_matrix, our  final  processed  feature  matrix,  is  one  match.  Each  match  will               
have  150  features  column  and  1  label  column.  Each  of  the  10  player-champion  pairs  in  the  game                  
will   have   15   statistic   features.   The   list   of   features   are:  
 

Champion   feature  Players   features   (average)  

Armor   per   level  
Attack   damage   per   level  
Attack   range  
Attack   speed  
Hp   per   level  
Spell   block   per   level  

Assists  
Deaths  
Kills  
Gold   earn  
Total   Damage   Dealt  
Total   Damage   Taken  
Total   Minions   Killed  
Total   Time   Crowd   Control   Dealt  
Vision   Score  
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Features_matrix is  then  used  to  perform  logistic  regression  to  produce  a  prediction             
model.  The features_matrix is  saved  back  to  CosmosDB  and  will  be  collected  again  through               
Databricks   to   perform   machine   learning.  

Originally,  we  worked  on  a  sample  dataset  that  was  only  a  few  hundred  records  and  we                 
intended  to  use  the  champion  mastery  scores  for  each  player  in  the  model.  However,  once  we                 
were  ready  to  work  on  our  full  dataset  we  ran  into  trouble.  Joining  the  champion  masteries  onto                  
the  players  proved  to  be  too  computationally  expensive,  and  even  with  an  increased  cluster  size                
we  could  not  process  the  data  in  Spark  to  match  our  plans.  This  is  because  this  join  operation                   
multiplied  the  number  of  records  by  a  huge  amount.  Since  there  are  146  champions,  every  player                 
has  a  value  for  each  of  the  146  (even  if  the  value  is  0),  which  we  had  to  join  for  all  players  we                        
had.  This  operation  was  incredibly  expensive  and  not  feasible  with  the  full  dataset.  We  decided                
to  implement  a  simpler  model  which  did  not  include  the  champion  mastery  values  in  order  to                 
make   sure   that   we   had   a   deployable   model   on   the   full   dataset.   

 
D. Machine   Learning   Model  

 
Problem   definition  

Given  a  match m ,  list  of  10  players p  and  their  corresponding  list  of  10  champions                 
c , for  each ,  we  generate  a  feature  list  .  Each  feature  list    p , } , 1 0  { i ci   ≤ i ≤ 1       xp,c,i      
consists  of  9  player  history  statistics  and  6  champion  statistic.  Match m features              
will  then  be .  Let y  be  a  binary  number    {x , , ..x }, 1 0  Xm =   p ,c1 1

xp ,c2 2
. p ,ci i

  ≤ i ≤ 1        
indicate  whether  blue  team  (team  100)  wins  the  match,  our  model  will  try  to               
estimate   the   posterior   probability   (y  | X )P m = 1 m  

 
 We  chose  to  employ  a  logistic  regression  model  for  this  project.  This  was  chosen  based                
off  of  the  related  works  mentioned  earlier.  It  is  the  correct  blend  of  simple,  fast  and  powerful.  As                   
discussed  earlier,  the  features  included  a  number  of  stats  for  each  player  in  the  match.  Since  there                  
are  10  players  this  resulted  in  a  pretty  large  number  of  features.  As  was  discussed  earlier  in  the                   
paper,  we  ended  up  having  2  models.  One  complex  one  which  could  only  be  fitted  on  a  smaller                   
data  set,  and  one  simple  model  which  can  be  fit  on  the  entire  dataset.  The  simple  model,  which  is                    
the  one  that  was  deployed  in  the  end  had  150  features,  15  for  each  player  in  the  match.  For                    
comparison’s  sake,  and  also  to  see  which  would  be  easier  to  deploy  to  the  web  app,  we  used  two                    
libraries  to  fit  our  logistic  regression  models.  The  first  model  we  created  was  done  in  SparkML,                 
and   the   second   was   done   through   Scikit   Learn   and   Azure   Machine   Learning.  

Fitting  models  on  Scikit-Learn  compared  to  SparkML  wasn’t  that  different.  The  main             
difference  between  the  two  is  that  one  uses  Spark  dataframes  while  the  other  uses  Pandas                
dataframes.  It  is  relatively  simple  to  fit  a  model  with  either  one,  and  both  yield  similar  results.                  
However,  the  Scikit  model  proved  to  be  more  useful  in  the  end  because  the  integration  with                 
Azure  Machine  Learning  Workspace,  which  is  what  we  used  to  deploy  the  model.  The  advantage                
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of  the  Spark  ML  implementation  was  that  we  were  already  working  on  a  Spark  cluster.  However,                 
switching  over  to  scikit  was  as  simple  as  converting  the  Spark  dataframe  to  a  Pandas  dataframe.                 
Both   models   were   fitted   and   tested   using   a   70/30   train   test   split.  
 
 

■ HDInsight   Vs   Databricks  
After  fitting  the  model  in  Spark  ML  we  had  to  find  the  best  way  to  deploy  the                  

model  to  a  webapp.  Upon  doing  research  we  found  that  it  was  very  hard  to  deploy  from                  
HDInsight.  To  get  around  this  we  had  to  move  our  model  from  HDInsight  to  another  spark                 
platform,  Databricks.  On  Databricks  we  could  deploy  the  model  through  Azure  Machine             
Learning  Workspace.  Compared  to  HDInsight,  we  found  Databricks  to  be  slightly  more  difficult              
to  configure  initially.  However,  it  allowed  greater  flexibility  and  easier  management  than             
HDInsight  did.  HDInsight  clusters  can’t  be  shut  down  and  instead  must  be  deleted  when  you  are                 
done  using  them.  They  also  cannot  be  changed  while  you  are  using  them.  In  contrast,  Databricks                 
clusters  can  be  modified  as  you  use  them  if  necessary,  and  you  can  delete  the  clusters  without                  
deleting  everything  else  you  are  doing  on  Databricks  [5].  For  instance,  at  one  point  we  increased                 
the  number  of  workers  on  our  Databricks  cluster  from  the  default  4  up  to  8  to  speed  up  our  work.                     
HDInsight  persists  its  data  on  an  Azure  Blob  Storage  system  [6],  but  it  is  not  as  convenient  or                   
easy  to  access  as  it  is  on  Databricks.  Since  Databricks  also  runs  Spark  with  Pyspark  notebook                 
support,  it  was  easy  to  transition  our  code  from  the  HDInsight  cluster  to  the  new  Databricks  one.                  
The  only  hiccup  when  transferring  from  HDInsight  to  Databricks  was  the  CosmosDB  connector.              
Setting  it  up  for  HDInsight  was  a  more  intuitive  process,  but  once  it  was  set  up  everything                  
worked  as  expected.  Thus  it  was  easy  to  fit  a  new  SparkML  Logistic  regression  on  our  sample                  
dataset.  
 

E. Deploying   Machine   Learning   model  
Deploying  the  model  proved  to  be  one  of  the  most  difficult  tasks  of  the  entire  project.                 

There  were  quite  a  few  options  to  choose  from,  but  none  of  them  were  as  simple  as  we  would                    
have  hoped.  The  solution  that  we  ended  up  using  required  us  to  use  Azure  Machine  Learning                 
Workspace  (AMLW)  to  deploy  the  model  that  we  had  already  made.  As  was  mentioned  earlier,                
Azure  Machine  Learning’s  integration  with  Scikit  Learn  was  better  than  it  was  with  SparkML,  so                
we  decided  to  deploy  the  model  we  fit  with  that.  The  results  of  the  two  machine  learning  libraries                   
were   very   similar   anyway,   so   we   were   not   losing   anything   by   choosing   to   use   the   Scikit   model.   

We  first  integrated  AMLW  with  Databricks  and  created  an  experiment  on  the  workspace.              
Then  we  created  a  run  in  the  experiment.  The  run  performs  model  fitting  and  tuning  using                 
Scikit-learn.  After  the  model  is  done,  Scikit-learn  produces  a  pickled  model  file.  The  run  then                
uploads   the   file   to   its   experiment   space.   

We  then  located  that  model  file  on  AMLW  and  downloaded  it  to  our  local  host.  We  then                  
used  this  downloaded  model  to  deploy  our  web  application  on  local  host.  We  once  again  used                 
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AMLW  to  create  a Docker  Container  to  make  a  Machine  Learning  server  which  receives  user                
input,  which  is  a  match  instance,  and  outputs  the  result,  the  predicted  outcome  of  the  match,                 
through   REST   calls.  

The  web  app  that  we  created  is  a  very  simple  one  to  test  the  deployment  of  the  model.  It                    
takes  user  inputs  for  all  of  the  players  on  each  team,  as  well  as  the  champions  that  they  are                    
playing  and  their  roles.  It  is  then  process  this  input  to  create  one  match  instance.  The  instance                  
then  is  sent  to  the  Docker  Container  and  the  Container  returned  the  predicted  probability.  The                
web  app  was  created  using  Flask,  which  is  a  Python  framework  for  web  development.  Flask  was                 
a  good  choice  because  it  was  quick  to  learn  and  setup  a  basic  app.  It  was  also  a  good  choice                     
because  it  is  in  Python,  which  is  a  language  that  we  have  more  experience  with  than  the  other                   
alternatives   for   the   task.  

 
Figure   3.   Machine   Learning   process   till   deployment  

 
 

 
Figure   4.   Web   app   process  

 
IV. RESULTS   AND   DISCUSSION  

In  our  raw  data  we  queried  25784  matches  and  9784  players.  This  was  pruned  down  to                 
9112  matches  and  around  2000  players  after  data  processing.  The  processing  was  done  on               
HDInsight  was  done  on  a  cluster  with  2  worker  nodes,  while  the  processing  done  on  Databricks                 
was  done  on  a  cluster  with  8.  Each  worker  node  on  HDInsight  had  8  cores  and  56GB  of  memory.                    
Each  worker  node  on  Databricks  had  4  cores  and  14  GB  of  memory.  The  driver  nodes  for  both                   
had  28  GB  of  memory.  There  are  a  few  reasons  for  the  sharp  drop  in  the  amount  of  data.  The                     
biggest  contributor  is  that  in  our  final  model,  we  only  use  matches  that  we  have  history  data  of                   
all  10  players,  which  means  it  will  mostly  consist  of seed  matches and  some secondary  matches                 
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with  enough  data.  However,  despite  this  large  drop  we  still  had  a  very  healthy  sample  size.  The                  
final  feature  matrix  had  150  features.  The  cost  of  adding  additional  features  was  very  high  since                 
there  needed  to  be  one  for  each  of  the  10  players  in  the  match.  There  were  many  statistics                   
available  to  us  in  the  match  data  that  may  have  yielded  some  additional  predictive  power,                
however  the  trade-off  in  model  complexity  did  not  seem  worth  it  as  we  were  already  dealing                 
with   so   many   features.  

Our  final  model  has  6378  records  for  training  data  and  2734  records  for  test  data.  The                 
best  run  of  our  model  on  Azure  Machine  Learning  resulted  in  an  accuracy  score  of 83.38%  on                  
test  set.  We  also  took  other  performance  metrics  of  the  model.  They  are  included  in  the  following                  
tables   and   figures:  
 
 

 Precision  Recall  F1-score  Support  

0  0.84  0.82  0.83  1365  

1  0.82  0.84  0.83  1369  

avg/total  0.83  0.83  0.83  2734  

 
 

0-actual  1114  251  

1-actual  214  1155  

n   =   2734  0-   predicted  1-predicted  

 
 

log   loss   5.874  

ROC   AUC  0.829  

Table   7:   Performance   Metrics   for   the   LR   model.   From   top   to   bottom:   
Precision,   Recall   and   F1   on   each   class   and   overall  

Confusion   Matrix   of   the   model   results  
Log-loss   and   area   under   the   ROC   curve   for   the   model  
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Figure   5:   ROC   curve   for   the   LR   Model  

 
There  are  a  number  of  interesting  findings  in  these  metrics  (all  on  the  test  set)  worth                 

discussing.  The  F1  score,  as  well  as  the  accuracy  and  the  area  under  the  ROC  curve  are  all  quite                    
good  and  similar  at  around  0.83.  The  Log-loss  was  5.874.  We  are  very  happy  with  these  results                  
as  they  are  comparable  or  better  to  the  related  works  that  we  viewed  and  higher  than  we  initially                   
expected.  The  value  of  our  model  is  backed  up  by  the  fact  that  all  of  the  metrics  yielded  similar                    
results.  Additionally,  on  multiple  runs  of  the  model  on  Azure  Machine  Learning,  the  results  were                
consistent.  The  confusion  matrix  shows  that  there  were  relatively  few  false  positives  and              
negatives,  and  that  the  numbers  of  each  were  similar,  which  is  reflected  in  the  very  similar                 
precision   and   recall   values.  

These  numbers  were  similar,  though  slightly  weaker,  than  the  numbers  from  our  model              
made  in  SparkML.  The  Spark  model  yielded  a  ROC  AUC  of  .93,  Precision  of  .85,  and  Recall  of                   
.85.  While  these  are  certainly  better  than  the  numbers  yielded  by  Scikit-learn,  the  difference  is                
small  enough  that  the  trade  off  in  ease  of  deployment  made  Scikit  the  superior  choice  for  this                  
project  
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Table   8:   Top   10   Important   Features  
We  also  perform  features  analysis.  The  most  important  features  are  consistent  between             

teams  which  is  a  good  sign  of  their  predictive  power.  Though  it  is  interesting  that  the  gap                  
between  the  importance  of  support  average  deaths  by  team  is  larger  than  the  gap  for  the  other                  
features.  They  also  open  up  some  interesting  discussions  about League  of  Legends  matches.  The               
prominence  of  Jungle  and  Support  stats  in  the  top  10  features  leads  one  to  believe  that  these  roles                   
tend  to  have  a  higher  impact  on  the  outcome  of  a League match.  On  the  other  hand,  the  Top  and                     
Middle  roles  are  absent  from  the  top  10  features,  which  could  mean  that  they  have  a  lesser                  
overall  impact  on  the  game.  It  is  also  interesting  that  even  among  the  top  10  features,  the  top  4                    
are  notably  higher  in  predictive  power  than  the  rest  of  the  top  10.  With  the  top  2  having  around                    
1.5   times   the   score   of   the   10th   highest   feature.  

The  total  lack  of  champion  statistics  in  the  top  10  shows  that  the  player  tends  to  be  more                   
important  than  the  champion  pick.  This  does  not  come  as  a  huge  surprise  to  us,  as  a  poor                   
performance  by  a  player  can  make  the  strengths  of  a  champion  wholly  irrelevant.  Champions               
have   many   strengths   and   weaknesses,   but   it   is   on   the   player   to   take   advantage   of   them.  
 

V. CONCLUSION  
This  project  proved  the  predictability  of League  of  Legends  matches  based  off  of  the               

players  and  champions  within  the  match.  We  were  able  to  fit  a  logistic  regression  model  that                 
yielded  good,  consistent  results  on  the  data.  The  results  were  actually  better  than  expected.  With                
further   work   and   a   more   complex   model   even   better   results   might   be   possible.   

Over  the  course  of  this  project  we  used  many  different  big  data  technologies  and  learned                
a  lot  about  them.  With  the  insight  that  we  have  gained  from  the  project  it  is  clear  that  the  initial                     
planning  stage  of  the  project  could  have  been  a  lot  cleaner  if  we  had  more  experience.  The  fact                   
that  we  had  to  switch  platforms  mid-project  due  to  the  limited  deployment  options  on  HDInsight                
was  a  glaring  flaw  in  our  planning  that  showed  our  inexperience  with  big  data  projects.  However,                 
it  was  a  valuable  experience  as  we  got  to  compare  the  two  services  and  learn  more  about  the                   
benefits   of   each.   
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One  sentiment  which  we’ve  often  seen  expressed  both  by  professors  and  online  is  that               
people  misjudge  the  proportion  of  a  project  which  will  be  spent  on  data  preparation  compared  to                 
actual  modelling.  This  lesson  was  definitely  hammered  home  by  this  project.  Our  data  came  in  a                 
very  messy  format  which  required  a  lot  of  work  to  hammer  down  to  features  that  we  wanted.                  
Dealing  with  multiple  nested  structs  in  the  JSON  hierarchy  along  with  many  array  based  features                
made  querying  and  cleaning  the  data  a  much  larger  and  longer  process  than  was  originally                
anticipated.  

The  other  difficult  part  of  the  project  was  the  deployment  of  the  machine  learning  model                
once  it  was  fit.  This  was  a  task  that  we  originally  underestimated  when  we  were  planning  for  the                   
project  as  well.  Part  of  our  struggle  was  that  ease  of  deployment  varies  greatly  depending  on  the                  
platform  and  libraries  that  you  are  using.  However,  this  part  of  the  project  further  proved  the                 
value  of  platform-as-a-service  systems  like  Azure.  Building  the  connections  between  all  of  the              
work  that  we  did  would  have  been  even  harder  without  the  backing  infrastructure  of  Azure                
which   we   used   for   all   stages   of   the   project.  

There  are  a  number  of  improvements  and  ideas  for  the  future  if  we  continue  to  work  on                  
this  project.  The  most  obvious  one  would  be  extending  the  model  to  be  fit  on  our  original  full  list                    
of  features.  This  was  too  computationally  intensive  for  our  purposes  in  this  project,  but  given                
more  time  and  resources  we  could  see  the  predictive  power  of  champion  mastery  scores  on  game                 
outcomes.  This  would  be  an  interesting  look  on  how  experience  with  a  champion  improves               
performance.   

Another  potential  option  for  the  front  end  of  the  project  would  be  an  improvement  to  user                 
input.  Our  current  implementation  allows  the  user  to  input  the  10  players,  champions  and  roles                
within  a  match.  However,  an  alternative  implementation  could  simply  take  one  player.  The  API               
could  then  query  a  live  match  of  that  player  and  fetch  the  other  players  and  champion  picks                  
within   that   live   match.   We   would   then   be   making   live   predictions.  
 
References  

[1]   “Apache   Spark   Tutorial:   Machine   Learning.”    DataCamp   Community ,   28   July   2017,  
https://www.datacamp.com/community/tutorials/apache-spark-tutorial-machine-learnin 
g .  

[2] Azure/Azure-Cosmosdb-Spark .   2016.   Microsoft   Azure,   2019.    GitHub ,  
https://github.com/Azure/azure-cosmosdb-spark .  

[3] Cojocar,   Bogdan.   “Realtime   Prediction   Using   Spark   Structured   Streaming,   XGBoost  
and   Scala.”    Medium ,   13   Oct.   2018,  
https://towardsdatascience.com/realtime-prediction-using-spark-structured-streaming-x 
gboost-and-scala-d4869a9a4c66 .  

[4] Conley,   Kevin,   and   Daniel   Perry.    How   Does   He   Saw   Me?   A   Recommendation   Engine  
for   Picking   Heroes   in   Dota   2 .   p.   4.  

[5] Getting   Started   —   Databricks   Documentation .  
https://docs.databricks.com/getting-started/index.html .   Accessed   24   Nov.   2019.  

https://www.datacamp.com/community/tutorials/apache-spark-tutorial-machine-learning
https://www.datacamp.com/community/tutorials/apache-spark-tutorial-machine-learning
https://www.datacamp.com/community/tutorials/apache-spark-tutorial-machine-learning
https://github.com/Azure/azure-cosmosdb-spark
https://github.com/Azure/azure-cosmosdb-spark
https://towardsdatascience.com/realtime-prediction-using-spark-structured-streaming-xgboost-and-scala-d4869a9a4c66
https://towardsdatascience.com/realtime-prediction-using-spark-structured-streaming-xgboost-and-scala-d4869a9a4c66
https://towardsdatascience.com/realtime-prediction-using-spark-structured-streaming-xgboost-and-scala-d4869a9a4c66
https://docs.databricks.com/getting-started/index.html
https://docs.databricks.com/getting-started/index.html


17  

[6] hrasheed-msft.    What   Are   the   Apache   Hadoop   and   Apache   Spark   Technology   Stack?   -  
Azure   HDInsight .     https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-overview .  
Accessed   24   Nov.   2019.  

[7] Integrating   Kafka   and   Spark   Streaming:   Code   Examples   and   State   of   the   Game .  
https://www.michael-noll.com/blog/2014/10/01/kafka-spark-streaming-integration-exa 
mple-tutorial/ .   Accessed   10   Nov.   2019.  

[8] Kalyanaraman,   Kaushik.    To   Win   or   Not   to   Win?   A   Prediction   Model   to   Determine   the  
Outcome   of   a   DotA2   Match .   p.   7.  

[9] League   of   Legends:   Predicting   Wins   In   Champion   Select   With   Machine   Learning .  
https://hackernoon.com/league-of-legends-predicting-wins-in-champion-select-with-ma 
chine-learning-6496523a7ea7 .   Accessed   19   Oct.   2019.  

[10] Libraries   —   Databricks   Documentation .  
https://docs.databricks.com/libraries.html#create-a-library .   Accessed   24   Nov.   2019.  

[11] Matsuzaki,   Tsuyoshi.   “Spark   ML   Serving   with   Azure   Machine   Learning.”    Tsmatz ,   4  
Mar.   2019,  
https://tsmatz.wordpress.com/2019/03/04/spark-ml-pipeline-serving-inference-by-azure 
-machine-learning-service/ .  

[12]    PredictLeague   -   Approach .     https://www.cs.hmc.edu/~jfelton/approach.html .   Accessed  
19   Oct.   2019.  

[13]   sdgilley.    Image   Classification   Tutorial:   Deploy   Models   -   Azure   Machine   Learning .  
https://docs.microsoft.com/en-us/azure/machine-learning/service/tutorial-deploy-model 
s-with-aml .   Accessed   24   Nov.   2019.  

[14]   Tassi,   Paul.   “Riot   Games   Reveals   ‘League   of   Legends’   Has   100   Million   Monthly  
Players.”    Forbes ,  
https://www.forbes.com/sites/insertcoin/2016/09/13/riot-games-reveals-league-of-legen 
ds-has-100-million-monthly-players/ .   Accessed   10   Nov.   2019.  

[15]    The   Flask   Mega-Tutorial   Part   II:   Templates   -   Miguelgrinberg.Com .  
https://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-ii-templates .  
Accessed   24   Nov.   2019.  

[16]   knandu.    Connect   Apache   Spark   to   Azure   Cosmos   DB .  
https://docs.microsoft.com/en-us/azure/cosmos-db/spark-connector .   Accessed   24   Nov.  
2019.  

[17]   trevorbye.    Tutorial:   Train   Your   First   Azure   ML   Model   in   Python   -   Azure   Machine  
Learning .  
https://docs.microsoft.com/en-us/azure/machine-learning/service/tutorial-1st-experimen 
t-sdk-train .   Accessed   24   Nov.   2019.  

[18]   Wang,   Weiqi.    Predicting   Multiplayer   Online   Battle   Arena   (MOBA)   Game   Outcome  
Based   on   Hero   Draft   Data .   p.   16.  

        [19]   Apache   Spark   Homepage,    https://spark.apache.org/  
[20]   markjbrown.    Introduction   to   Azure   Cosmos   DB .  

https://docs.microsoft.com/en-us/azure/cosmos-db/introduction .   Accessed   25   Nov.  
2019.  

 
 

 

https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-overview
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-overview
https://www.michael-noll.com/blog/2014/10/01/kafka-spark-streaming-integration-example-tutorial/
https://www.michael-noll.com/blog/2014/10/01/kafka-spark-streaming-integration-example-tutorial/
https://www.michael-noll.com/blog/2014/10/01/kafka-spark-streaming-integration-example-tutorial/
https://hackernoon.com/league-of-legends-predicting-wins-in-champion-select-with-machine-learning-6496523a7ea7
https://hackernoon.com/league-of-legends-predicting-wins-in-champion-select-with-machine-learning-6496523a7ea7
https://hackernoon.com/league-of-legends-predicting-wins-in-champion-select-with-machine-learning-6496523a7ea7
https://docs.databricks.com/libraries.html#create-a-library
https://docs.databricks.com/libraries.html#create-a-library
https://tsmatz.wordpress.com/2019/03/04/spark-ml-pipeline-serving-inference-by-azure-machine-learning-service/
https://tsmatz.wordpress.com/2019/03/04/spark-ml-pipeline-serving-inference-by-azure-machine-learning-service/
https://tsmatz.wordpress.com/2019/03/04/spark-ml-pipeline-serving-inference-by-azure-machine-learning-service/
https://www.cs.hmc.edu/~jfelton/approach.html
https://www.cs.hmc.edu/~jfelton/approach.html
https://docs.microsoft.com/en-us/azure/machine-learning/service/tutorial-deploy-models-with-aml
https://docs.microsoft.com/en-us/azure/machine-learning/service/tutorial-deploy-models-with-aml
https://docs.microsoft.com/en-us/azure/machine-learning/service/tutorial-deploy-models-with-aml
https://www.forbes.com/sites/insertcoin/2016/09/13/riot-games-reveals-league-of-legends-has-100-million-monthly-players/
https://www.forbes.com/sites/insertcoin/2016/09/13/riot-games-reveals-league-of-legends-has-100-million-monthly-players/
https://www.forbes.com/sites/insertcoin/2016/09/13/riot-games-reveals-league-of-legends-has-100-million-monthly-players/
https://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-ii-templates
https://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-ii-templates
https://docs.microsoft.com/en-us/azure/cosmos-db/spark-connector
https://docs.microsoft.com/en-us/azure/cosmos-db/spark-connector
https://docs.microsoft.com/en-us/azure/machine-learning/service/tutorial-1st-experiment-sdk-train
https://docs.microsoft.com/en-us/azure/machine-learning/service/tutorial-1st-experiment-sdk-train
https://docs.microsoft.com/en-us/azure/machine-learning/service/tutorial-1st-experiment-sdk-train
https://spark.apache.org/
https://docs.microsoft.com/en-us/azure/cosmos-db/introduction

